A catalog of SCN1A variants.

نویسنده

  • Christoph Lossin
چکیده

Over the past 10 years mutations in voltage-gated sodium channels (Na(v)s) have become closely associated with inheritable forms of epilepsy. One isoform in particular, Na(v)1.1 (gene symbol SCN1A), appears to be a superculprit, registering with more than 330 mutations to date. The associated phenotypes range from benign febrile seizures to extremely serious conditions, such as Dravet's syndrome (SMEI). Despite the wealth of information, mutational analyses are cumbersome, owing to inconsistencies among the Na(v)1.1 sequences to which different research groups refer. Splicing variability is the core problem: Na(v)1.1 co-exists in three isoforms, two of them lack 11 or 28 amino acids compared to full-length Na(v).1.1. This review establishes a standardized nomenclature for Na(v)1.1 variants so as to provide a platform from which future mutation analyses can be started without need for up-front data normalization. An online resource--SCN1A infobase--is introduced.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rare variants of small effect size in neuronal excitability genes influence clinical outcome in Japanese cases of SCN1A truncation-positive Dravet syndrome

Dravet syndrome (DS) is a rare, devastating form of childhood epilepsy that is often associated with mutations in the voltage-gated sodium channel gene, SCN1A. There is considerable variability in expressivity within families, as well as among individuals carrying the same primary mutation, suggesting that clinical outcome is modulated by variants at other genes. To identify modifier gene varia...

متن کامل

CACNA1A variants may modify the epileptic phenotype of Dravet syndrome.

Dravet syndrome is an intractable epileptic syndrome beginning in the first year of life. De novo mutations of SCN1A, which encode the Na(v)1.1 neuronal voltage-gated sodium channel, are considered the major cause of Dravet syndrome. In this study, we investigated genetic modifiers of this syndrome. We performed a mutational analysis of all coding exons of CACNA1A in 48 subjects with Dravet syn...

متن کامل

Polymorphic Variants of SCN1A and EPHX1 Influence Plasma Carbamazepine Concentration, Metabolism and Pharmacoresistance in a Population of Kosovar Albanian Epileptic Patients

AIM The present study aimed to evaluate the effects of gene variants in key genes influencing pharmacokinetic and pharmacodynamic of carbamazepine (CBZ) on the response in patients with epilepsy. MATERIALS & METHODS Five SNPs in two candidate genes influencing CBZ transport and metabolism, namely ABCB1 or EPHX1, and CBZ response SCN1A (sodium channel) were genotyped in 145 epileptic patients ...

متن کامل

SCN1A Gene Mutation and Adaptive Functioning in 18 Vietnamese Children with Dravet Syndrome

BACKGROUND AND PURPOSE Dravet syndrome is a rare and severe type of epilepsy in infants. The heterogeneity in the overall intellectual disability that these patients suffer from has been attributed to differences in genetic background and epilepsy severity. METHODS Eighteen Vietnamese children diagnosed with Dravet syndrome were included in this study. SCN1A variants were screened by direct s...

متن کامل

The potential implication of SCN1A and CYP3A5 genetic variants on antiepileptic drug resistance among Egyptian epileptic children

PURPOSE Despite the advances in the pharmacological treatment of epilepsy, pharmacoresistance still remains challenging. Understanding of the pharmacogenetic causes is critical to predict drug response hence providing a basis for personalized medications. Genetic alteration in activity of drug target and drug metabolizing proteins could explain the development of pharmacoresistant epilepsy. So ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brain & development

دوره 31 2  شماره 

صفحات  -

تاریخ انتشار 2009